3 research outputs found

    In-Depth Sulfhydryl-Modified Cellulose Fibers for Efficient and Rapid Adsorption of Cr(VI)

    No full text
    As one of the hazardous heavy metal ion pollutants, Cr(VI) has attracted much attention in the sewage treatment research field due to its wide distribution range and serious toxicity. In this paper, cellulose fibers were prepared by wet spinning and followed by freeze drying, resulting in large porosity. Subsequently, in-depth sulfhydryl modification was applied with cellulose fibers for efficient and rapid adsorption of Cr(VI). The maximum adsorption capacity of sulfhydryl-modified cellulose fibers to Cr(VI) can reach 120.60 mg g−1, the adsorption equilibrium can be achieved within 300 s, and its adsorption rate can reach 0.319 mg g−1 s−1. The results show that the in-depth sulfhydryl-modified cellulose fibers perform excellent adsorption capacity for chromium, and are also available for other heavy metal ions. At the same time, the low cost and environmentally friendly property of the as-synthesized material also demonstrate its potential for practical usage for the treatment of heavy metal ion pollution in waste water

    HTO/Cellulose Aerogel for Rapid and Highly Selective Li+ Recovery from Seawater

    No full text
    To achieve rapid and highly efficient recovery of Li+ from seawater, a series of H2TiO3/cellulose aerogels (HTO/CA) with a porous network were prepared by a simple and effective method. The as-prepared HTO/CA were characterized and their Li+ adsorption performance was evaluated. The obtained results revealed that the maximum capacity of HTO/CA to adsorb Li+ was 28.58 ± 0.71 mg g−1. The dynamic k2 value indicated that the Li+ adsorption rate of HTO/CA was nearly five times that of HTO powder. Furthermore, the aerogel retained extremely high Li+ selectivity compared with Mg2+, Ca2+, K+, and Na+. After regeneration for five cycles, the HTO/CA retained a Li+ adsorption capacity of 22.95 mg g−1. Moreover, the HTO/CA showed an excellent adsorption efficiency of 69.93% ± 0.04% and high selectivity to Li+ in actual seawater. These findings confirm its potential as an adsorbent for recovering Li+ from seawater
    corecore